首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5591篇
  免费   1011篇
  国内免费   847篇
测绘学   31篇
大气科学   8篇
地球物理   1932篇
地质学   2380篇
海洋学   2014篇
天文学   14篇
综合类   187篇
自然地理   883篇
  2024年   17篇
  2023年   69篇
  2022年   128篇
  2021年   215篇
  2020年   261篇
  2019年   281篇
  2018年   254篇
  2017年   232篇
  2016年   249篇
  2015年   249篇
  2014年   310篇
  2013年   438篇
  2012年   263篇
  2011年   327篇
  2010年   290篇
  2009年   334篇
  2008年   407篇
  2007年   361篇
  2006年   391篇
  2005年   257篇
  2004年   279篇
  2003年   269篇
  2002年   194篇
  2001年   194篇
  2000年   164篇
  1999年   172篇
  1998年   144篇
  1997年   130篇
  1996年   83篇
  1995年   68篇
  1994年   64篇
  1993年   70篇
  1992年   67篇
  1991年   41篇
  1990年   50篇
  1989年   29篇
  1988年   19篇
  1987年   11篇
  1986年   8篇
  1985年   18篇
  1984年   10篇
  1983年   17篇
  1982年   5篇
  1981年   5篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1954年   1篇
排序方式: 共有7449条查询结果,搜索用时 31 毫秒
991.
Increased sediment loads from accelerated catchment erosion significantly degrade waterways worldwide. In the South East Queensland region of Australia, sediment loads are degrading Moreton Bay, a Ramsar listed wetland of international significance. In this region, like most parts of coastal Australia, sediment is predominantly derived from gully and channel bank erosion processes. A novel approach is presented that uses carbon and nitrogen stable isotope ratios and elemental composition to discriminate between these often indistinguishable subsoil sediment sources. The conservativeness of these sediment properties is first tested by examining the effect of particle size separation (testing for consistency during transport) and the effect of sampling at different times (testing for temporal source consistency). The discrimination potential of these sediment properties is then assessed with the conservative properties, based on the particle size and temporal analyses, modelled to determine sediment provenance in three catchments. Nitrogen sediment properties were found to have significant particle size enrichment and high temporal variance indicative of non‐conservative behaviour. Conversely, carbon stable isotopes had very limited particle size and temporal variability highlighting their suitability for sediment tracing. Channel erosion was modelled to be a significant source of sediment (μ 51%, σ 9%) contrasting desktop modelling research that estimated gully erosion is the predominant sediment source. To limit the supply of sediment to Moreton Bay, channel bank and gully erosion must both be targeted by sediment management programs. By distinguishing between subsoil sediment sources, this approach has the potential to enhance the management of sediment loads degrading waterways worldwide. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
992.
Sediment rating curves, which are fitted relationships between river discharge (Q) and suspended‐sediment concentration (C), are commonly used to assess patterns and trends in river water quality. In many of these studies, it is assumed that rating curves have a power‐law form (i.e. C = aQb, where a and b are fitted parameters). Two fundamental questions about the utility of these techniques are assessed in this paper: (i) how well to the parameters, a and b, characterize trends in the data, and (ii) are trends in rating curves diagnostic of changes to river water or sediment discharge? As noted in previous research, the offset parameter, a, is not an independent variable for most rivers but rather strongly dependent on b and Q. Here, it is shown that a is a poor metric for trends in the vertical offset of a rating curve, and a new parameter, â, as determined by the discharge‐normalized power function [C = â (Q/QGM)b], where QGM is the geometric mean of the Q‐values sampled, provides a better characterization of trends. However, these techniques must be applied carefully, because curvature in the relationship between log(Q) and log(C), which exists for many rivers, can produce false trends in â and b. Also, it is shown that trends in â and b are not uniquely diagnostic of river water or sediment supply conditions. For example, an increase in â can be caused by an increase in sediment supply, a decrease in water supply or a combination of these conditions. Large changes in water and sediment supplies can occur without any change in the parameters, â and b. Thus, trend analyses using sediment rating curves must include additional assessments of the time‐dependent rates and trends of river water, sediment concentrations and sediment discharge. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   
993.
The hyporheic zone of riverbed sediments has the potential to attenuate nitrate from upwelling, polluted groundwater. However, the coarse‐scale (5–10 cm) measurement of nitrogen biogeochemistry in the hyporheic zone can often mask fine‐scale (<1 cm) biogeochemical patterns, especially in near‐surface sediments, leading to incomplete or inaccurate representation of the capacity of the hyporheic zone to transform upwelling NO3?. In this study, we utilised diffusive equilibrium in thin‐films samplers to capture high resolution (cm‐scale) vertical concentration profiles of NO3?, SO42?, Fe and Mn in the upper 15 cm of armoured and permeable riverbed sediments. The goal was to test whether nitrate attenuation was occurring in a sub‐reach characterised by strong vertical (upwelling) water fluxes. The vertical concentration profiles obtained from diffusive equilibrium in thin‐films samplers indicate considerable cm‐scale variability in NO3? (4.4 ± 2.9 mg N/L), SO42? (9.9 ± 3.1 mg/l) and dissolved Fe (1.6 ± 2.1 mg/l) and Mn (0.2 ± 0.2 mg/l). However, the overall trend suggests the absence of substantial net chemical transformations and surface‐subsurface water mixing in the shallow sediments of our sub‐reach under baseflow conditions. The significance of this is that upwelling NO3?‐rich groundwater does not appear to be attenuated in the riverbed sediments at <15 cm depth as might occur where hyporheic exchange flows deliver organic matter to the sediments for metabolic processes. It would appear that the chemical patterns observed in the shallow sediments of our sub‐reach are not controlled exclusively by redox processes and/or hyporheic exchange flows. Deeper‐seated groundwater fluxes and hydro‐stratigraphy may be additional important drivers of chemical patterns in the shallow sediments of our study sub‐reach. © 2015 The Authors. Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   
994.
The stability of river channels and their suitability as habitat for aqueous organisms is strongly controlled by the rate of bedload transport. Quantification of bedload transport rates in rivers is difficult, not only because of the temporal variation in transport, but also because of the cross‐channel variation in transport. The objectives of this study were: (i) to determine the effect of cross‐channel variation in bedload transport on the uncertainty of width‐integrated transport rates; and to use this knowledge (ii) to improve guidelines for bedload sampling. This was done through a thorough statistical evaluation of stochastic and systematic uncertainties involved in bed‐load transport measurements. Based on this evaluation, new guidelines are presented for determination of the number of samples and sampling positions across the channel that are required for bedload measurements in several types of sand‐bed rivers and gravel‐bed rivers. The guidelines relate to bedload measurements made with pressure‐difference (Helley‐Smith type) samplers that require numerous bedload samples of short duration at several positions across the channel. The results show that generally more sampling positions across the channel are required in gravel‐bed rivers than in sand‐bed rivers. For gravel‐bed rivers with unknown cross‐channel distribution of transport, at least 10 sampling positions are recommended, whereas for most sand‐bed rivers five positions suffice. In addition, at least 12 short‐duration samples are required at each position to obtain bedload estimates with uncertainties below 20%. If the same level of uncertainty is desired in the case of high spatial and temporal variation in transport rates, the number of short‐duration samples needed per sampling position increases to 40.  相似文献   
995.
Most techniques for estimating settling velocities of natural particles have been developed for siliciclastic sediments. Therefore, to understand how these techniques apply to bioclastic environments, measured settling velocities of bioclastic sedimentary deposits sampled from a nearshore fringing reef in Western Australia were compared with settling velocities calculated using results from several common grain‐size analysis techniques (sieve, laser diffraction and image analysis) and established models. The effects of sediment density and shape were also examined using a range of density values and three different models of settling velocity. Sediment density was found to have a significant effect on calculated settling velocity, causing a range in normalized root‐mean‐square error of up to 28%, depending upon settling velocity model and grain‐size method. Accounting for particle shape reduced errors in predicted settling velocity by 3% to 6% and removed any velocity‐dependent bias, which is particularly important for the fastest settling fractions. When shape was accounted for and measured density was used, normalized root‐mean‐square errors were 4%, 10% and 18% for laser diffraction, sieve and image analysis, respectively. The results of this study show that established models of settling velocity that account for particle shape can be used to estimate settling velocity of irregularly shaped, sand‐sized bioclastic sediments from sieve, laser diffraction, or image analysis‐derived measures of grain size with a limited amount of error. Collectively, these findings will allow for grain‐size data measured with different methods to be accurately converted to settling velocity for comparison. This will facilitate greater understanding of the hydraulic properties of bioclastic sediment which can help to increase our general knowledge of sediment dynamics in these environments.  相似文献   
996.
Turbidity currents and their deposits can be investigated using several methods, i.e. direct monitoring, physical and numerical modelling, sediment cores and outcrops. The present study focused on thin clayey sand turbidites found in Lake Hazar (Turkey) occurring in eleven clusters of closely spaced thin beds. Depositional processes and sources for three of those eleven clusters are studied at three coring sites. Bathymetrical data and seismic reflection profiles are used to understand the specific geomorphology of each site. X‐ray, thin sections and CT scan imagery combined with grain‐size, geochemical and mineralogical measurements on the cores allow characterization of the turbidites. Turbidites included in each cluster were produced by remobilization of surficial slope sediment, a process identified in very few studies worldwide. Three types of turbidites are distinguished and compared with deposits obtained in flume studies published in the literature. Type 1 is made of an ungraded clayey silt layer issued from a cohesive flow. Type 2 is composed of a partially graded clayey sand layer overlain by a mud cap, attributed to a transitional flow. Type 3 corresponds to a graded clayey sand layer overlain by a mud cap issued from a turbulence‐dominated flow. While the published experimental studies show that turbulence is damped by cohesion for low clay content, type 3 deposits of this study show evidence for a turbulence‐dominated mechanism despite their high clay content. This divergence may in part relate to input variables, such as water chemistry and clay mineralogy, that are not routinely considered in experimental studies. Furthermore, the large sedimentological variety observed in the turbidites from one coring site to another is related to the evolution of a sediment flow within a field‐scale basin made of a complex physiography that cannot be tackled by flume experiments.  相似文献   
997.
文章对青海省达肯达坂山地区1∶5万水系沉积物测量所得数据进行R型因子分析,提取了5种具有代表性的因子组合类型,对各因子元素组合得分归类,绘制了测区地球化学分区图。通过判读分析,地球化学分区图反映了不同地质体中以相应元素组合类型为主的地球化学异常。研究对比组合分区与因子得分异常,有利于推断相关元素的浓集部位,也为确定找矿靶区提供了方向。  相似文献   
998.
黄河下游漫滩高含沙洪水河床调整剧烈,多数断面洪水后形成"相对窄深河槽",洪水前后河槽宽度发生明显变化。分别以观测断面洪水前后的河槽宽度为基准,计算漫滩高含沙洪水期泥沙时空沉积分布,结果表明,漫滩高含沙洪水与非漫滩高含沙洪水相比,能将主河槽内淤积泥沙量的59.3%搬运至嫩滩或滩地,减缓主河槽淤积。在分析研究基础上,建立了洪水后漫滩河段河槽相对缩窄率与洪水前期河槽宽度的量化关系,洪水后主槽宽度缩窄率为15.5%~44.0%;分析遴选了漫滩高含沙洪水滩地淤积量与主要水力因子间关联度及物理含义,给出了漫滩高含沙洪水滩地淤积量与相应水力因子间的响应函数;初步提出漫滩洪水河道塑槽淤滩的临界水沙配置指标,临界水沙系数取值为0.025~0.040。成果对高含沙洪水调控具有一定的指导意义。  相似文献   
999.
滩槽复式河道是冲积河流中最为常见的一种形态,也是河流动力学研究最为重要的内容之一。以复式河道概化试验数据和水沙运动的区域性特征为依据,在提出滩槽复式断面主槽平衡区、滩槽交互区、滩地平衡区以及边壁区4个分区的基础上,将水流流态最为复杂的滩槽交互区进一步划分为对数流速区(内区)和非对数流速区(外区),通过引入描写动植物生长过程的S型曲线,提出了内外区分界线的确定方法。以滩槽交互区横向分布公式为基础,通过线性假定和积分变换,给出了滩槽交互区内断面平均流速和含沙量的计算公式,并对不同分区内的流速和含沙量的差异性进行了比较分析。  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号